Burmese_Python_(2125910875)

Fantastic beasts

Creatures with incredible superpowers including the ability to survive being frozen and suffocated and resist ageing could revolutionise medicine, space travel and even war

IT HAS been holding its breath for months. Locked under an airless seal of ice, the extraordinary animal waits. At last, the warmth of spring brings relief. Claws twitch, a brain rouses and a beak pushes through the lake’s thawing slush to take a lungful of air. Incredibly, the western painted turtle is none the worse for having endured the kind of oxygen starvation that would normally kill a human in minutes.

At more than 100 days, the turtle holds the record among four-legged animals for surviving without oxygen. It is by no means the only creature to boast jaw-dropping talents. The constellation of powers found across the animal kingdom seems fantastical: the ability to almost completely regenerate innards, to dodge ageing or cancer, to slumber immobile for months without bone or muscle wasting, to slow biological time or even enter a state of suspended animation that can withstand all manner of trials, from freezing to bombardment with gamma rays.

Almost as implausible-sounding is the idea that humans might be able to borrow some of these abilities. Yet the discovery that these powers are underpinned by genes and biological processes we too possess makes this a distinct possibility. Some potential applications – such as putting people into a sort of hibernation for space travel – remain distant goals. But others – including keeping transplant organs fresh without cooling and developing new tactics to tackle cancer and ageing – seem feasible. In fact, the US has launched a research project to exploit animal powers that could help injured soldiers on the battlefield (see “Stop the clock”).

Read more: https://www.newscientist.com/article/mg24432510-500-want-to-regrow-organs-and-defy-cancer-just-copy-these-awesome-animals/#ixzz66fUIdOgP

Image: Karunakar Rayker from India [CC BY 2.0], via Wikimedia Commons

Burmese_Python_(2125910875)

Sex and the single cell

Sex chromosomes in every cell of the body exert widespread and sometimes unexpected effects.

It was the mouse equivalent of the midnight munchies. Instead of sleeping normally, Karen Reue’s lab mice were waking early and nibbling on extra snacks, which was making them obese. On investigation, she was surprised to find that the probable reason for this out-of-hours feeding was the genetic sex of their cells — the number and kind of sex chromosomes they contain. “It wasn’t at all what we expected,” says Reue, a geneticist at the University of California, Los Angeles (UCLA).

“There is a huge consequence to having two X chromosomes versus an X and a Y.

The idea that our body cells have a ‘sex’, and that this property has consequences for our health, has taken biologists by surprise. Experiments performed in the mid-twentieth century had implied that the hormones produced by the ovaries or testes were the source of physiological differences between males and females. But Reue’s findings are part of a growing body of evidence showing that hormones are only part of the story. It now seems that the genetic sex of cells is crucial too. Cellular sex may also help to explain why women and men have different susceptibilities to conditions such as obesity, heart disease, neurodegeneration, autoimmunity and cancer, and why such conditions can behave differently in the two sexes. Certainly, when it comes to metabolism, “there is a huge consequence to having two X chromosomes versus an X and a Y throughout your whole body,” says Reue…

To read more, click here: Nature Outlook article on cellular sex (5th October 2017)